
International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 04, ISSN No. 2455-2143, Pages 95-99

Published Online August 2024 in IJEAST (http://www.ijeast.com)

95

MODEL IMPLEMENTATION AND

COMPREHENSIVE STUDY ON VISUAL AIR

TYPING SYSTEMS

Adarsh Jha, Bhavisha Narendra Chaudhari

Department of Computational Intelligence

SRM Institute of Science and Technology, Chennai,

India

Abstract—This paper explores the implementation and

applications of visual air typing systems, focusing on

fingertip detection and text recognition to provide an

alternative to the traditional input methods. Although

models with similar functionality exist, our study

emphasizes how such systems can offer practical solutions

for users with visual impairments and enhance user

experience in virtual reality (VR) environments. By

detecting fingertip movements and translating them into

written words, such models present a seamless and

intuitive user experience. For individuals with visual

impairments, traditional keyboards can be challenging,

and sign language lacks uniformity across different

regions. An air typing system addresses these issues by

offering a consistent text input method. Additionally, in

VR applications where traditional keyboards are

impractical, it enables more natural and efficient text

entry. This paper provides a comprehensive review of

existing air typing technologies, detailing their strengths

and limitations. We discuss the potential future directions

for air typing systems, highlighting the need for more

inclusive and versatile input methods. Our findings

indicate that air typing can significantly enhance user

interaction in diverse environments, making it a valuable

alternative to traditional keyboards. Overall, this study

underscores the practical applications and benefits of air

typing systems, particularly for visually impaired users

and VR contexts, contributing to advancing more inclusive

technological solutions.

Keywords—Air Typing, Keyboard, virtual reality, input

methods

I. INTRODUCTION

The emergence of Computer Vision and Machine Learning

technologies has opened many opportunities for the

advancement of Human Computer Interaction (HCI), such as

air writing and gesture recognition. Air writing enables users

to write mid-air using gestures and use this as a form of input

or communication with the computer. This technology heavily

relies on the advancements in hand tracking and pattern

recognition, particularly using frameworks like MediaPipe and

OpenCV,Error! Reference source not found.[1] to identify

and interpret human gestures in real-time. The easy

accessibility of these technologies has made this field a major

area of research and development in HCI.

The fingertip tracking capability provided by MediaPipe is

essential for accurately capturing the fine movements required

for air writing. By focusing on the fingertip, the system can

determine the exact path traced by the user's hand, which is

crucial for correctly interpreting the intended characters or

symbols. This approach minimizes errors and ensures that the

captured gesture closely matches the user's intended input. The

use of MediaPipe also offers the advantage of being

lightweight and efficient, making it suitable for real-time

applications where responsiveness is critical.

Once the gesture is captured, the Google Vision API[3] is

employed to interpret the air-written characters or shapes. The

API's robust image recognition capabilities allow it to

accurately detect and classify the input, converting the hand

gestures into recognizable text or symbols. This combination

of fingertip tracking and advanced image recognition creates a

seamless air writing experience, where users can write or draw

in the air with high accuracy and minimal latency. The

integration of these technologies not only enhances the

usability of air writing systems but also broadens their

potential applications in areas such as virtual reality, assistive

technology, and interactive displays.

Our work constitutes a simple yet effective implementation

approach that would enhance the accessibility and reliability

of air writing technology. By effectively integrating the

capabilities of MediaPipe and the Google Vision API, our

system successfully addresses and transcends many of the

limitations inherent in earlier methods that depended solely on

traditional image processing techniques. This innovative

approach not only increases the precision of air writing

recognition but also opens avenues for more intuitive and

user-friendly human-computer interactions.

II. RELATED WORK

In recent years, significant advancements in deep learning and

artificial intelligence have driven research into real-time

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 04, ISSN No. 2455-2143, Pages 95-99

Published Online August 2024 in IJEAST (http://www.ijeast.com)

96

gesture recognition systems, particularly for American Sign

Language (ASL)[4] recognition. Gesture recognition plays a

crucial role in improving communication between hearing and

hearing-impaired individuals by translating hand movements

into text or spoken language. One of the approaches, as

discussed by Taskiran et al.Error! Reference source not

found., employs Convolutional Neural Networks (CNNs) to

classify hand gestures based on image data. Their study

utilized a dataset from Massey University and achieved

remarkable test accuracy. The researchers focused on

extracting hand gestures using convex hull algorithms and

real-time skin detection, achieving 98.05% accuracy in

recognizing ASL gestures through a real-time system.

Similarly, another recent study by Ba and Bagyammal[5]

utilized Google's MediaPipe framework and Long Short-Term

Memory (LSTM)[6] models to enhance the accuracy of

gesture recognition. MediaPipe, which is effective in detecting

3D hand landmarks, was employed for the recognition of both

static and dynamic hand gestures. The LSTM model allowed

the system to capture sequences of hand movements,

achieving a high accuracy rate of 99% for ASL alphabet

recognition. Their dataset included permutations of hand

gestures from different individuals, enhancing the robustness

of their model.

Both of these approaches showcase the potential of machine

learning techniques like CNNs and LSTMs in improving

gesture recognition systems. By leveraging real-time hand

tracking and deep learning-based classification methods, these

studies contribute significantly to bridging the communication

gap for hearing-impaired individuals. The high accuracies

achieved in both systems highlight the effectiveness of using

advanced neural network architectures for ASL recognition,

making these models highly applicable in real-world

environments.

While American Sign Language (ASL) is one of the most

widely recognized sign languages, it is important to note that

there are numerous other sign languages globally, each with

unique grammar, syntax, and gestures. Examples include

British Sign Language (BSL), French Sign Language (LSF),

and Indian Sign Language (ISL), among others. The

approaches discussed above, such as the CNN-based

recognition system by Taskiran et al. and the LSTM-based

model by Ba and Bagyammal, are specifically tailored to ASL.

Since these systems are trained on ASL datasets, they rely

heavily on the distinct hand shapes and movements used in

ASL. Consequently, their effectiveness would diminish when

applied to other sign languages, as the gestures and structures

in BSL, LSF, or ISL may differ significantly. Without

retraining or adaptation to the specific features of these other

sign languages, the current models would likely fail to provide

accurate recognition, limiting their generalizability across sign

language systems.

In addition, there is a necessity for an individual to memorise

all these signs accurately in order for them to use this as an

alternate form of input method. Therefore, air writing systems

provide a better solution by overcoming such limitations. Air-

writing systems, which allow users to write characters or

words in free space using hand or finger movements, have

become increasingly relevant for human-computer interaction,

especially in applications where traditional input methods are

impractical.

Chen et al. (2016)[7] focus on air-writing recognition using

six-degree-of-freedom (6-DOF) motion data captured via

optical and inertial sensors. This method models individual

letters as "motion characters" and connects them into "motion

words" using ligature models. To handle the variability in

motion gestures, they employ Hidden Markov Models

(HMMs) to model the writing process. Their system

demonstrates a word error rate of 0.8% for word-based

recognition and 1.9% for letter-based recognition, highlighting

its effectiveness in recognizing connected and overlapped

writing.

Hsieh et al. (2021)[8] present a deep learning-based air-

writing recognition system that leverages convolutional neural

networks (CNNs). Their approach captures air-writing

trajectories using a 2D camera, allowing users to write freely

without requiring an imaginary box or delimiter. This system

preprocesses the x and y coordinates of the user's hand

movement into 1D or 2D arrays, significantly reducing the

complexity of the neural network while maintaining high

accuracy. Their method achieves real-time recognition with an

accuracy of over 99%, outperforming traditional image-based

recognition methods.

Both approaches contribute to the advancement of air-writing

systems by addressing fundamental recognition challenges.

Chen et al. (2016) provide deep insights into the complexities

of free-space writing, particularly for continuous and

overlapped letters, while Hsieh et al. (2021) offer a CNN-

based system that excels in simplicity and real-time

application. These methodologies are critical for improving

air-writing recognition systems, which can be applied in

various hands-free environments, such as smart homes, virtual

reality, and intelligent system control.

Multiple machine learning models have been employed to

optimize hand gesture recognition systems. Mishra et al.

(2023)[9]experimented with models like Dense Networks,

CNN, and KNN, concluding that CNN provided the highest

accuracy (99.21%) at the expense of longer training times. The

researchers also found that MediaPipe, combined with dense

models, significantly reduces training time while maintaining

high accuracy. Quiñonez et al. (2022)[10] further

demonstrated the adaptability of MediaPipe by integrating it

with other machine learning platforms, such as TensorFlow,

and applying it in various use cases like face and hand

tracking.

In summary, both Mishra et al. (2023) and Quiñonez et al.

(2022) underscore the effectiveness of MediaPipe as a tool for

gesture recognition, particularly when combined with machine

learning models. Its ability to perform real-time tracking with

minimal computational resources makes it a compelling

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 04, ISSN No. 2455-2143, Pages 95-99

Published Online August 2024 in IJEAST (http://www.ijeast.com)

97

choice for implementing gesture-controlled systems in smart

home environments.

III.METHODOLOGY

A. Fingertip Detection –

The first step in the Visual Air Typing System involves

detecting fingertip and hand landmarks using the Mediapipe

Hands model, a machine learning framework capable of

identifying 21 key points on each hand, including the

fingertips, knuckles, and wrist as shown in Fig. 1. The model

processes individual video frames in real-time and provides

the normalized 3D coordinates (x, y, z) of these landmarks,

where (x) and (y) are normalized to the frame dimensions

(ranging from 0 to 1), and (z) represents the depth relative to

the wrist. This detailed spatial information allows for the

accurate tracking of each finger’s position. The fingertip

detection algorithm leverages this data to precisely monitor

fingertip movements, forming the foundation for interpreting

complex gestures. The system’s ability to process this

information in real-time ensures a seamless and responsive

experience, enabling efficient translation of air typing gestures

into text inputs, even during rapid hand motions. The fingertip

detection algorithm can be described as follows:

Algorithm: Fingertip Detection using Mediapipe Hands
Input: Video stream from camera

Output: Fingertip coordinates (x,y,z)(x, y, z)(x,y,z)

1. Initialize Mediapipe Hands model.

2. Process frame to detect hand landmarks.

3. Extract 21 hand landmarks.

4. Identify fingertip landmarks from the 21 hand landmarks.

5. Normalize coordinates (x,y)(x,y)(x,y) to frame

dimensions.

6. Obtain depth coordinate zzz relative to the wrist.

Return: Fingertip coordinates (x,y,z)(x, y, z)(x,y,z).

Fig. 1. The 21 specific points on each hand.

B. Fingertip Tracking –

Once the fingertip is successfully detected, the subsequent step

is to track its movement to accurately interpret writing

gestures. This process begins by continuously monitoring the

angle between the joints of the index finger, which is crucial

for distinguishing different types of gestures. The system

calculates this angle in real-time to track the fingertip's path. To

interpret a writing gesture, the system compares the calculated

angle with a predefined threshold. If the angle between the

joints exceeds this threshold of 160 degrees, it indicates a

specific type of movement that the system recognizes as a

writing gesture. This threshold is carefully selected to

differentiate between various hand movements and gestures.

By applying this method, the system can accurately identify

writing gestures based on the angle variations, thus enabling

precise gesture recognition. The effectiveness of this approach

is demonstrated in Fig. 2, which shows how the system

responds to different angles and movements.

Fig. 2. Finger landmark extraction and angle calculation.

The angle between three pointsa, b, ccan be calculated using

the law of cosines. The formula is:

 (

)

Where:

 √
 ()

 (2)

 √
 ()

 (3)

 √
 ()

 (4)

Algorithm: Fingertip Tracking and Writing Detection

Input: Video stream from camera

Output: Drawing path

1. Initialize an empty list points to store the drawing path.

2. Initialize last_activity_time.

3. While video capture is open:

a. Read a frame from the camera.

b. Convert the frame to RGB.

c. Process the frame with the Mediapipe Hands model.

d. If hand landmarks are detected:

i. Extract the coordinates of the index finger joints (TIP, PIP,

MCP).

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 04, ISSN No. 2455-2143, Pages 95-99

Published Online August 2024 in IJEAST (http://www.ijeast.com)

98

ii. Calculate the angle between the joints.

iii. Convert the coordinates to image space.

iv. If the angle is greater than

WRITING_ANGLE_THRESHOLD:

- Append the coordinates to the drawing path.

- Update last_activity_time.

v. Else:

- Append None to the drawing path.

e. Display the frame.

f. If 'q' is pressed:

- Break the loop.

Return: Drawing path

C. Text Recognition –

The final step in the process involves recognizing the written

text using the Google Cloud Vision API when a pause in

writing is detected. An example showing the letter B being air

typed is shown in Fig. 3. The system monitors the user's input,

and when it detects a significant pause in movement—

indicating that writing has likely stopped—it captures the

current drawing on the canvas. At this point, the system takes

a snapshot of the canvas and saves it as an image. This image,

which contains the user's handwriting or drawing, is then sent

to the Google Cloud Vision API for text recognition. The API

processes the image, analyzing the content to identify and

extract any text present. Once the text is recognized, the

system can use it for further processing, such as converting

handwritten notes into digital text or triggering additional

actions based on the recognized content. This automated

process ensures that the written input is efficiently converted

into machine-readable text with minimal user intervention.

The process has been visualized in Fig. 4

Algorithm: Text Recognition

Input: Drawing path

Output: Recognized text

1. Monitor the drawing path for significant pauses in

movement.

2. While monitoring the drawing path:

a. If a pause is detected:

i. Capture the current drawing on the canvas.

ii. Save the drawing as an image file.

iii. Send the image file to the Google Cloud Vision API.

iv. Receive and store the recognized text.

Return: Recognized text

Fig. 3. Air Writing the letter B.

Fig. 4. Flowchart for Text Recognition

Mathematically, the recognition process involves several steps

of image processing and pattern matching. These include:

a) Image Preprocessing:

The captured image undergoes preprocessing steps to enhance

the quality and readability of the text. This includes converting

the image to grayscale, binarization using techniques like

Otsu's thresholding, and noise reduction using morphological

operations. The binary thresholding operation is defined as:

where I(x, y) is the pixel intensity at position (x, y) and T is

the threshold value obtained using Otsu's method.

b) Text Segmantation:

The preprocessed image is segmented to isolate individual

characters or words. This involves identifying connected

components and bounding boxes around text regions. The

bounding box is defined as:

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 04, ISSN No. 2455-2143, Pages 95-99

Published Online August 2024 in IJEAST (http://www.ijeast.com)

99

 ounding o

Where(x, y) are the coordinates of the top-left corner of the

bounding box, and (w, h) are the width and height of the box.

c) Feature Extraction:

Features are extracted from the segmented text regions to

represent the characters. Common features include pixel

values, histograms of oriented gradients (HOG), and scale-

invariant feature transform (SIFT) descriptors. The Histogram

of Oriented Gradients (HOG) is defined as:

 ∑*()

()

 (7)

d) Pattern Matching:

The extracted features are matched against a database of

known character features using techniques like k-nearest

neighbors (KNN) or neural networks. The matching process

involves calculating similarity scores and selecting the best

match. The similarity measure is defined as:

 imilarity
∑

 ∑

∑

where a and bare feature vectors of the characters being

compared.

e) Neural Network Classification:

In the case of using neural networks, the segmented and

preprocessed text image is passed through a series of

convolutional layers, pooling layers, and fully connected

layers to classify the characters. The equation for the neural

network layer is defined as:

where y is the output vector, W is the weight matrix, x is the

input vector, b is the bias vector, and f is the activation

function (e.g., ReLU, sigmoid).

These mathematical steps and algorithms allow the Google

Cloud Vision API to accurately identify and convert

handwritten characters into digital text, ensuring the reliable

performance of the Visual Air Typing System.

IV.CONCLUSION

In conclusion, the implementation of the Visual Air Typing

System highlights the potential of fingertip detection, gesture

tracking, and text recognition as a viable alternative to

traditional input methods. By leveraging the MediaPipe

framework for hand tracking and Google Cloud Vision API

for accurate text recognition, the system offers a seamless and

intuitive user experience. This technology provides a

particularly beneficial solution for individuals with visual

impairments, as well as for use in virtual reality environments

where traditional keyboards are impractical. The study

demonstrates the effectiveness of air typing systems in

improving accessibility and user interaction, paving the way

for more inclusive and efficient human-computer interaction

systems. Future work could focus on further enhancing the

system’s accuracy and e ploring additional applications in

diverse technological environments.

V. REFERENCE

[1] Lugaresi, C., Tang, J., Nash, H., McClanahan, C.,

Uboweja, E., Hays, M., Zhang, F., Chang, C.-L., Yong,

M. G., Lee, J., Chang, W.-T., Hua, W., Georg, M., and

Grundmann, M. (2019). MediaPipe: A Framework for

Building Perception Pipelines, arXiv preprint,

arXiv:1906.08172.

[2] https://ai.google.dev/edge/mediapipe/solutions/guide.

[3] https://cloud.google.com/vision?hl=en.

[4] https://microsoft.github.io/data-for-

society/dataset?d=MS-ASL-American-Sign-Language-

Dataset#overview.

[5] Taskiran, M., Kıllıoğlu, M., and Kahraman, N. (2018).

A Real-Time System For Recognition of American

Sign Language by Using Deep Learning, in Proc. of the

2018 International Conference on Telecommunications

and Signal Processing (TSP).

[6] Sundar, B., and Bagyammal, T. (2022). American Sign

Language Recognition for Alphabets Using MediaPipe

and LSTM, Procedia Computer Science, 215, (pp. 642-

651).

[7] Hochreiter, S., and Schmidhuber, J. (1997). Long

Short-term Memory, Neural Computation, 9, (pp. 1735-

1780).

[8] Chen, M., AlRegib, G., and Juang, B.-H. (2016). Air-

Writing Recognition—Part I: Modeling and

Recognition of Characters, Words, and Connecting

Motions, IEEE Transactions on Human-Machine

Systems, 46(3), (pp. 403-413).

[9] Hsieh, C.-H., Lo, Y.-S., Chen, J.-Y., and Tang, S.-K.

(2021). Air-Writing Recognition Based on Deep

Convolutional Neural Networks, IEEE Access, 9, (pp.

142827-142836).

[10] Mishra, O., Suryawanshi, P., Singh, Y., and Deokar, S.

(2023). A Mediapipe-Based Hand Gesture Recognition

Home Automation System, in Proc. of the 2nd

International Conference on Futuristic Technologies

(INCOFT), Belagavi, Karnataka, India, (pp. 1-6).

[11] Quiñonez, Y., Lizarraga, C., and Aguayo, R. (2022).

Machine Learning Solutions with MediaPipe, in Proc.

of the 11th International Conference on Software

Process Improvement (CIMPS), Acapulco, Guerrero,

Mexico, (pp. 212-215).

https://ai.google.dev/edge/mediapipe/solutions/guide
https://cloud.google.com/vision?hl=en
https://microsoft.github.io/data-for-society/dataset?d=MS-ASL-American-Sign-Language-Dataset#overview
https://microsoft.github.io/data-for-society/dataset?d=MS-ASL-American-Sign-Language-Dataset#overview
https://microsoft.github.io/data-for-society/dataset?d=MS-ASL-American-Sign-Language-Dataset#overview

