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Abstract—This paper explores the implementation and 

applications of visual air typing systems, focusing on 

fingertip detection and text recognition to provide an 

alternative to the traditional input methods. Although 

models with similar functionality exist, our study 

emphasizes how such systems can offer practical solutions 

for users with visual impairments and enhance user 

experience in virtual reality (VR) environments. By 

detecting fingertip movements and translating them into 

written words, such models present a seamless and 

intuitive user experience. For individuals with visual 

impairments, traditional keyboards can be challenging, 

and sign language lacks uniformity across different 

regions. An air typing system addresses these issues by 

offering a consistent text input method. Additionally, in 

VR applications where traditional keyboards are 

impractical,  it enables more natural and efficient text 

entry. This paper provides a comprehensive review of 

existing air typing technologies, detailing their strengths 

and limitations. We discuss the potential future directions 

for air typing systems, highlighting the need for more 

inclusive and versatile input methods. Our findings 

indicate that air typing can significantly enhance user 

interaction in diverse environments, making it a valuable 

alternative to traditional keyboards. Overall, this study 

underscores the practical applications and benefits of air 

typing systems, particularly for visually impaired users 

and VR contexts, contributing to advancing more inclusive 

technological solutions. 
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I. INTRODUCTION 

The emergence of Computer Vision and Machine Learning 

technologies has opened many opportunities for the 

advancement of Human Computer Interaction (HCI), such as 

air writing and gesture recognition. Air writing enables users 

to write mid-air using gestures and use this as a form of input 

or communication with the computer. This technology heavily 

relies on the advancements in hand tracking and pattern 

recognition, particularly using frameworks like MediaPipe and 

OpenCV,Error! Reference source not found.[1] to identify 

and interpret human gestures in real-time. The easy 

accessibility of these technologies has made this field a major 

area of research and development in HCI.  

The fingertip tracking capability provided by MediaPipe is 

essential for accurately capturing the fine movements required 

for air writing. By focusing on the fingertip, the system can 

determine the exact path traced by the user's hand, which is 

crucial for correctly interpreting the intended characters or 

symbols. This approach minimizes errors and ensures that the 

captured gesture closely matches the user's intended input. The 

use of MediaPipe also offers the advantage of being 

lightweight and efficient, making it suitable for real-time 

applications where responsiveness is critical. 

Once the gesture is captured, the Google Vision API[3] is 

employed to interpret the air-written characters or shapes. The 

API's robust image recognition capabilities allow it to 

accurately detect and classify the input, converting the hand 

gestures into recognizable text or symbols. This combination 

of fingertip tracking and advanced image recognition creates a 

seamless air writing experience, where users can write or draw 

in the air with high accuracy and minimal latency. The 

integration of these technologies not only enhances the 

usability of air writing systems but also broadens their 

potential applications in areas such as virtual reality, assistive 

technology, and interactive displays. 

Our work constitutes a simple yet effective implementation 

approach that would enhance the accessibility and reliability 

of air writing technology. By effectively integrating the 

capabilities of MediaPipe and the Google Vision API, our 

system successfully addresses and transcends many of the 

limitations inherent in earlier methods that depended solely on 

traditional image processing techniques. This innovative 

approach not only increases the precision of air writing 

recognition but also opens avenues for more intuitive and 

user-friendly human-computer interactions. 

 

II. RELATED WORK 

In recent years, significant advancements in deep learning and 

artificial intelligence have driven research into real-time 
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gesture recognition systems, particularly for American Sign 

Language (ASL)[4] recognition. Gesture recognition plays a 

crucial role in improving communication between hearing and 

hearing-impaired individuals by translating hand movements 

into text or spoken language. One of the approaches, as 

discussed by Taskiran et al.Error! Reference source not 

found., employs Convolutional Neural Networks (CNNs) to 

classify hand gestures based on image data. Their study 

utilized a dataset from Massey University and achieved 

remarkable test accuracy. The researchers focused on 

extracting hand gestures using convex hull algorithms and 

real-time skin detection, achieving 98.05% accuracy in 

recognizing ASL gestures through a real-time system. 

Similarly, another recent study by Ba and Bagyammal[5] 

utilized Google's MediaPipe framework and Long Short-Term 

Memory (LSTM)[6] models to enhance the accuracy of 

gesture recognition. MediaPipe, which is effective in detecting 

3D hand landmarks, was employed for the recognition of both 

static and dynamic hand gestures. The LSTM model allowed 

the system to capture sequences of hand movements, 

achieving a high accuracy rate of 99% for ASL alphabet 

recognition. Their dataset included permutations of hand 

gestures from different individuals, enhancing the robustness 

of their model. 

Both of these approaches showcase the potential of machine 

learning techniques like CNNs and LSTMs in improving 

gesture recognition systems. By leveraging real-time hand 

tracking and deep learning-based classification methods, these 

studies contribute significantly to bridging the communication 

gap for hearing-impaired individuals. The high accuracies 

achieved in both systems highlight the effectiveness of using 

advanced neural network architectures for ASL recognition, 

making these models highly applicable in real-world 

environments.  

While American Sign Language (ASL) is one of the most 

widely recognized sign languages, it is important to note that 

there are numerous other sign languages globally, each with 

unique grammar, syntax, and gestures. Examples include 

British Sign Language (BSL), French Sign Language (LSF), 

and Indian Sign Language (ISL), among others. The 

approaches discussed above, such as the CNN-based 

recognition system by Taskiran et al. and the LSTM-based 

model by Ba and Bagyammal, are specifically tailored to ASL. 

Since these systems are trained on ASL datasets, they rely 

heavily on the distinct hand shapes and movements used in 

ASL. Consequently, their effectiveness would diminish when 

applied to other sign languages, as the gestures and structures 

in BSL, LSF, or ISL may differ significantly. Without 

retraining or adaptation to the specific features of these other 

sign languages, the current models would likely fail to provide 

accurate recognition, limiting their generalizability across sign 

language systems.  

In addition, there is a necessity for an individual to memorise 

all these signs accurately in order for them to use this as an 

alternate form  of input method. Therefore, air writing systems 

provide a better solution by overcoming such limitations. Air-

writing systems, which allow users to write characters or 

words in free space using hand or finger movements, have 

become increasingly relevant for human-computer interaction, 

especially in applications where traditional input methods are 

impractical.  

Chen et al. (2016)[7] focus on air-writing recognition using 

six-degree-of-freedom (6-DOF) motion data captured via 

optical and inertial sensors. This method models individual 

letters as "motion characters" and connects them into "motion 

words" using ligature models. To handle the variability in 

motion gestures, they employ Hidden Markov Models 

(HMMs) to model the writing process. Their system 

demonstrates a word error rate of 0.8% for word-based 

recognition and 1.9% for letter-based recognition, highlighting 

its effectiveness in recognizing connected and overlapped 

writing. 

Hsieh et al. (2021)[8] present a deep learning-based air-

writing recognition system that leverages convolutional neural 

networks (CNNs). Their approach captures air-writing 

trajectories using a 2D camera, allowing users to write freely 

without requiring an imaginary box or delimiter. This system 

preprocesses the x and y coordinates of the user's hand 

movement into 1D or 2D arrays, significantly reducing the 

complexity of the neural network while maintaining high 

accuracy. Their method achieves real-time recognition with an 

accuracy of over 99%, outperforming traditional image-based 

recognition methods. 

Both approaches contribute to the advancement of air-writing 

systems by addressing fundamental recognition challenges. 

Chen et al. (2016) provide deep insights into the complexities 

of free-space writing, particularly for continuous and 

overlapped letters, while Hsieh et al. (2021) offer a CNN-

based system that excels in simplicity and real-time 

application. These methodologies are critical for improving 

air-writing recognition systems, which can be applied in 

various hands-free environments, such as smart homes, virtual 

reality, and intelligent system control. 

Multiple machine learning models have been employed to 

optimize hand gesture recognition systems. Mishra et al. 

(2023)[9]experimented with models like Dense Networks, 

CNN, and KNN, concluding that CNN provided the highest 

accuracy (99.21%) at the expense of longer training times. The 

researchers also found that MediaPipe, combined with dense 

models, significantly reduces training time while maintaining 

high accuracy. Quiñonez et al. (2022)[10] further 

demonstrated the adaptability of MediaPipe by integrating it 

with other machine learning platforms, such as TensorFlow, 

and applying it in various use cases like face and hand 

tracking. 

In summary, both Mishra et al. (2023) and Quiñonez et al. 

(2022) underscore the effectiveness of MediaPipe as a tool for 

gesture recognition, particularly when combined with machine 

learning models. Its ability to perform real-time tracking with 

minimal computational resources makes it a compelling 
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choice for implementing gesture-controlled systems in smart 

home environments. 

 

III.METHODOLOGY 

A. Fingertip Detection – 

The first step in the Visual Air Typing System involves 

detecting fingertip and hand landmarks using the Mediapipe 

Hands model, a machine learning framework capable of 

identifying 21 key points on each hand, including the 

fingertips, knuckles, and wrist as shown in Fig. 1. The model 

processes individual video frames in real-time and provides 

the normalized 3D coordinates (x, y, z) of these landmarks, 

where (x) and (y) are normalized to the frame dimensions 

(ranging from 0 to 1), and (z) represents the depth relative to 

the wrist. This detailed spatial information allows for the 

accurate tracking of each finger’s position. The fingertip 

detection algorithm leverages this data to precisely monitor 

fingertip movements, forming the foundation for interpreting 

complex gestures. The system’s ability to process this 

information in real-time ensures a seamless and responsive 

experience, enabling efficient translation of air typing gestures 

into text inputs, even during rapid hand motions. The fingertip 

detection algorithm can be described as follows: 

 

Algorithm: Fingertip Detection using Mediapipe Hands 
Input: Video stream from camera 

Output: Fingertip coordinates (x,y,z)(x, y, z)(x,y,z) 

1. Initialize Mediapipe Hands model. 

2. Process frame to detect hand landmarks. 

3. Extract 21 hand landmarks. 

4. Identify fingertip landmarks from the 21 hand landmarks. 

5. Normalize coordinates (x,y)(x,y)(x,y) to frame 

dimensions. 

6. Obtain depth coordinate zzz relative to the wrist. 

 

Return: Fingertip coordinates (x,y,z)(x, y, z)(x,y,z). 

 

 
Fig. 1. The 21 specific points on each hand. 

 

B. Fingertip Tracking – 

Once the fingertip is successfully detected, the subsequent step 

is to track its movement to accurately interpret writing 

gestures. This process begins by continuously monitoring the 

angle between the joints of the index finger, which is crucial 

for distinguishing different types of gestures. The system 

calculates this angle in real-time to track the fingertip's path. To 

interpret a writing gesture, the system compares the calculated 

angle with a predefined threshold. If the angle between the 

joints exceeds this threshold of 160 degrees, it indicates a 

specific type of movement that the system recognizes as a 

writing gesture. This threshold is carefully selected to 

differentiate between various hand movements and gestures. 

By applying this method, the system can accurately identify 

writing gestures based on the angle variations, thus enabling 

precise gesture recognition. The effectiveness of this approach 

is demonstrated in Fig. 2, which shows how the system 

responds to different angles and movements. 

 

 
Fig. 2. Finger landmark extraction and angle calculation. 

 

The angle between three pointsa, b, ccan be calculated using 

the law of cosines. The formula is: 
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Algorithm: Fingertip Tracking and Writing Detection 

Input: Video stream from camera 

Output: Drawing path 

1. Initialize an empty list points to store the drawing path. 

2. Initialize last_activity_time. 

3. While video capture is open: 

a. Read a frame from the camera. 

b. Convert the frame to RGB. 

c. Process the frame with the Mediapipe Hands model. 

d. If hand landmarks are detected: 

i. Extract the coordinates of the index finger joints (TIP, PIP, 

MCP). 
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ii. Calculate the angle between the joints. 

iii. Convert the coordinates to image space. 

iv. If the angle is greater than 

WRITING_ANGLE_THRESHOLD: 

- Append the coordinates to the drawing path. 

- Update last_activity_time. 

 

v. Else: 

- Append None to the drawing path. 

e. Display the frame. 

f. If 'q' is pressed: 

- Break the loop. 

Return: Drawing path 

 

C. Text Recognition – 

The final step in the process involves recognizing the written 

text using the Google Cloud Vision API when a pause in 

writing is detected. An example showing the letter B being air 

typed is shown in Fig. 3. The system monitors the user's input, 

and when it detects a significant pause in movement—

indicating that writing has likely stopped—it captures the 

current drawing on the canvas. At this point, the system takes 

a snapshot of the canvas and saves it as an image. This image, 

which contains the user's handwriting or drawing, is then sent 

to the Google Cloud Vision API for text recognition. The API 

processes the image, analyzing the content to identify and 

extract any text present. Once the text is recognized, the 

system can use it for further processing, such as converting 

handwritten notes into digital text or triggering additional 

actions based on the recognized content. This automated 

process ensures that the written input is efficiently converted 

into machine-readable text with minimal user intervention. 

The process has been visualized in Fig. 4 

 

Algorithm: Text Recognition 

Input: Drawing path 

Output: Recognized text 

1. Monitor the drawing path for significant pauses in 

movement. 

2. While monitoring the drawing path: 

a. If a pause is detected: 

i. Capture the current drawing on the canvas. 

ii. Save the drawing as an image file. 

iii. Send the image file to the Google Cloud Vision API. 

iv. Receive and store the recognized text. 

 

Return: Recognized text 

 

 
Fig. 3. Air Writing the letter B. 

 

 
Fig. 4. Flowchart for Text Recognition 

 

Mathematically, the recognition process involves several steps 

of image processing and pattern matching. These include:  

 

a) Image Preprocessing: 

The captured image undergoes preprocessing steps to enhance 

the quality and readability of the text. This includes converting 

the image to grayscale, binarization using techniques like 

Otsu's thresholding, and noise reduction using morphological 

operations. The binary thresholding operation is defined as: 

 

                                                                        

 

where I(x, y)  is the pixel intensity at position (x, y) and T is 

the threshold value obtained using Otsu's method. 

 

b) Text Segmantation: 

The preprocessed image is segmented to isolate individual 

characters or words. This involves identifying connected 

components and bounding boxes around text regions. The 

bounding box is defined as: 
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Where(x, y) are the coordinates of the top-left corner of the 

bounding box, and (w, h) are the width and height of the box. 

 

c) Feature Extraction: 

Features are extracted from the segmented text regions to 

represent the characters. Common features include pixel 

values, histograms of oriented gradients (HOG), and scale-

invariant feature transform (SIFT) descriptors. The Histogram 

of Oriented Gradients (HOG) is defined as: 
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d) Pattern Matching: 

The extracted features are matched against a database of 

known character features using techniques like k-nearest 

neighbors (KNN) or neural networks. The matching process 

involves calculating similarity scores and selecting the best 

match. The similarity measure is defined as: 
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where a and bare feature vectors of the characters being 

compared. 

 

e) Neural Network Classification: 

In the case of using neural networks, the segmented and 

preprocessed text image is passed through a series of 

convolutional layers, pooling layers, and fully connected 

layers to classify the characters. The equation for the neural 

network layer is defined as: 

 

          

 

where y is the output vector, W is the weight matrix, x is the 

input vector, b is the bias vector, and f is the activation 

function (e.g., ReLU, sigmoid). 

These mathematical steps and algorithms allow the Google 

Cloud Vision API to accurately identify and convert 

handwritten characters into digital text, ensuring the reliable 

performance of the Visual Air Typing System. 

 

IV.CONCLUSION 

In conclusion, the implementation of the Visual Air Typing 

System highlights the potential of fingertip detection, gesture 

tracking, and text recognition as a viable alternative to 

traditional input methods. By leveraging the MediaPipe 

framework for hand tracking and Google Cloud Vision API 

for accurate text recognition, the system offers a seamless and 

intuitive user experience. This technology provides a 

particularly beneficial solution for individuals with visual 

impairments, as well as for use in virtual reality environments 

where traditional keyboards are impractical. The study 

demonstrates the effectiveness of air typing systems in 

improving accessibility and user interaction, paving the way 

for more inclusive and efficient human-computer interaction 

systems. Future work could focus on further enhancing the 

system’s accuracy and e ploring additional applications in 

diverse technological environments. 
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